

PhD Thesis School of Biomedical Sciences and Pharmacy Faculty of Health and Medicine University of Newcastle, NSW, Australia

Title: Clinical use of SNP-microarrays for the detection of genome-wide changes in haematological malignancies with a focus on B-cell neoplasms

Nadine Kaye Berry BMedSc (*University of Western Sydney*)

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in Medical Genetics The University of Newcastle, Australia

March 2020

This research was supported by an Australian Government Research Training Program (RTP) Scholarship

TABLE OF CONTENTS

PREFACE	Page 5
Statement of originality	Page 5
Acknowledgement of authorship	Page 5
Acknowledgements	Page 6
Publications included in this thesis	Page 8
Tile figure legend	Page 8
Abbreviations	Page 9

CHAPTER 1: Synopsis and overview	Page 10
Summary	Page 10
Hypothesis	Page 12
Aims	Page 13
Overview of chapters	Page 14

CHAPTER 2: Introduction and background	Page 16
Introduction to cytogenomics in haematology	Page 16
Publication overview	Page 21
Aim	Page 21
Publication 1: 'Clinical use of SNP-microarrays for the detection of	Page 22
genome-wide changes in haematological malignancies'	i ugo zz

CHAPTER 3: Microarray in Myeloma	Page 40
Background on myeloma and plasma cell disorders	Page 40
Definition	Page 40
Prevalence	Page 42
Genetics of myeloma	Page 42

Risk stratification of plasma cell myeloma	Page 46
Conclusion	Page 48
Publication overview	Page 49
Aims	Page 49
Publication 2: 'Genomic profiling of plasma cell disorders in a clinical setting: integration of microarray and FISH, after CD138 selection of	
bone marrow'	Page 50

CHAPTER 4: Complex genomic signatures	Page 61
Chromothripsis	Page 61
Chromoanasynthesis	Page 62
Detection	Page 62
Publication overview	Page 63
Aim	Page 63
Publication 3: 'Detection of complex genomic signatures associated with	
risk in plasma cell disorders'	Page 64

CHAPTER 5: Microarray in precursor B-cell acute lymphoblastic leukaemia	Page 81
Introduction	Page 81
Disease diagnosis and classification	Page 81
Risk stratification and prognostication	Page 81
Role of SNP-microarray in the risk stratification of B-cell acute	
lymphoblastic leukaemia	Page 82
Publication overview	Page 85
Aim	Page 85
Publication 4: 'Enrichment of atypical hyperdiploidy and IKZF1 deletions	
detected by SNP-microarray in high-risk Australian AIEOP-BFM B-cell	
acute lymphoblastic cohort'	Page 86

CHAPTER 6: Conclusions	Page 105
Outcomes and significance	Page 106
Pitfalls and barriers	Page 109
Conclusions and future directions	Page 111
REFERENCES	Page 112
	Page 137
Ethics approvals	Page 139
Manuscript co-authorship declaration	Page 143
Manuscripts	Page 147
Publication 1: <i>Clinical use of SNP-microarrays for the detection of genome-wide changes in haematological malignancies</i> ' Publication 2: <i>'Genomic profiling of plasma cell disorders in a clinical</i>	Page 147
setting: integration of microarray and FISH, after CD138 selection of bone marrow'	Page 157
Publication 3: Detection of complex genomic signatures associated with risk in plasma cell disorders'	Page 161
Publication 4: 'Enrichment of atypical hyperdiploidy and IKZF1 deletions detected by SNP-microarray in high-risk Australian AIEOP-BFM B-cell	
acute lymphoblastic cohort'	Page 170
Supplementary data	Page 177
Supplementary methods	Page 196

PREFACE

STATEMENT OF ORIGINALITY

I hereby certify that the work embodied in the thesis is my own work, conducted under normal supervision. The thesis contains no material which has been accepted, or is being examined, for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made. I give consent to the final version of my thesis being made available worldwide when deposited in the University's Digital Repository, subject to the provisions of the Copyright Act 1968 and any approved embargo.

Nadine Kaye Berry

THESIS BY PUBLICATION: ACKNOWLEDGEMENT OF AUTHORSHIP

I hereby certify that this thesis is in the form of a series of papers. I have included as part of the thesis a written declaration from each co-author, endorsed in writing by the faculty Assistant Dean (Research Training), attesting to my contribution to any jointly authored papers (Appendix 2.0).

Nadine Kaye Berry

ACKNOWLEDGEMENTS

I dedicate this thesis to my late stepfather (step by name, father by love), James (Jim) Brunton. I owe this all to you! I will continue to make my work meaningful because of you. I will miss your joyful face whenever a significant moment was reached and also your inability to hide how proud you were.

Undertaking this PhD has truly been a life-changing experience for me, and it would not have been possible without the support of many people.

I was extremely lucky to have the best guidance, support and never-ending enthusiastic encouragement of three wonderful and extremely talented supervisors, Conjoint Associate Professor Anoop K Enjeti, Laureate Professor Rodney J Scott and Professor Philip Rowlings. Without their combined powers and continual up-beat view (even when I felt it was all going to collapse) I would not have successfully navigated my way through this incredibly long maze. Their positive feedback and confidence in me and my work was inspirational. For that I am truly grateful.

Many thanks to Dr Amanda Dixon-McIver, who was not only my sounding board for all things PhD related, but also really believed in me from the very beginning. Our collaborative work, whilst small thus far, has meant so much. I really appreciate her ability to ensure I realise what we do matters and that those presentation nerves are worth every red-faced, sweaty effort.

A very special gratitude goes out to A/Prof Rosemary Sutton and her team at the Children's Cancer Institute for essentially providing the opportunity to turn this into bigger things.

To my eternal cheerleader, my mother Paula, who has been there for every up and every down of this journey. My forever interested, encouraging and loving mother, who was always keen to know what I was doing and how I was going – no matter how complex the topic was. I also dedicate this this work to you.

I am grateful to my extended family of friends, who have provided me with moral and emotional support along the way.

And finally, last but by no means least, to those in the Molecular medicine department who have shown support and compassion throughout this process... it hasn't been an easy road, but it's one I have shared with you for the past eight and a half years. Thank you.

Thanks for all of your encouragement!

PUBLICATIONS INCLUDED IN THIS THESIS

Peer reviewed publications:

Publication 1: Berry, NK, Scott, RJ, Rowlings, P, and Enjeti, AK, *Clinical use of SNPmicroarrays for the detection of genome-wide changes in haematological malignancies.* Crit Rev Oncol Hematol, 2019. **142**: p. 58-67.

Publication 2: Berry, NK, Bain, NL, Enjeti, AK, and Rowlings, P, *Genomic profiling of plasma cell disorders in a clinical setting: integration of microarray and FISH, after CD138 selection of bone marrow.* J Clin Pathol, 2014. **67**(1): p. 66-9.

Publication 3: Berry, NK, Dixon-McIver, A, Scott, RJ, Rowlings, P, and Enjeti, AK, *Detection of complex genomic signatures associated with risk in plasma cell disorders.* Cancer Genet, 2017. **218-219**: p. 1-9.

Publication 4: Berry, NK, Scott, RJ, Sutton, R, Law, T, Trahair, TN, Dalla-Pozza, L, et al., *Enrichment of atypical hyperdiploidy and IKZF1 deletions detected by SNP-microarray in highrisk Australian AIEOP-BFM B-cell acute lymphoblastic leukaemia cohort.* Cancer Genet, 2020. **242**: p. 8-14.

TITLE PAGE FIGURE LEGEND

This image was a result representing chromosome 1, used to describe the complexity of genomic signatures identified in multiple myeloma. It was published in the Cancer Genetics journal. Berry, N. K., A. Dixon-McIver, R. J. Scott, P. Rowlings and A. K. Enjeti (2017). "Detection of complex genomic signatures associated with risk in plasma cell disorders." <u>Cancer Genetics</u> **218–219**: 1-9.

ABBREVIATIONS

ALL	Acute lymphoblastic leukaemia
AML	Acute myeloid leukaemia
B-ALL	B-cell acute lymphoblastic leukaemia
CGH	Comparative genomic hybridisation
CLL	Chronic lymphocytic leukaemia
СМА	Chromosomal microarray
Cn-LOH	Copy number loss of heterozygosity
CNV	Copy number variant
FISH	fluorescent in-situ hybridisation
GWAS	Genome-wide association study
LOH	Loss of heterozygosity
PCD	Plasma cell dyscrasia
PCR	Polymerase chain reaction
MDS	Myelodysplastic syndrome
MGUS	Monoclonal gammopathy of undetermined significance
MLPA	Multiplex Ligation-dependent Probe Amplification
MM	Multiple myeloma
MPS	Massively parallel sequencing
RT-PCR	Reverse transcription polymerase chain reaction
SNP	Single nucleotide polymorphism
T-ALL	T-cell acute lymphoblastic leukaemia